A Novel Enzyme Based Biosensor for Catechol Detection in Water Samples Using Artificial Neural Network


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
علوم پزشکی کرمانشاه
علوم پزشکی کرمانشاه

نویسندگان: سهیلا کاشانیان

کلمات کلیدی: Laccase biosensor/ ANN, Catechol, PEDOT:GO, Modeling

نشریه: Biochemical Engineering Journal , , 128 ,

اطلاعات کلی مقاله
hide/show

کد مقاله 12089
عنوان فارسی مقاله
عنوان لاتین مقاله A Novel Enzyme Based Biosensor for Catechol Detection in Water Samples Using Artificial Neural Network
نوع مقاله مقاله اصیل (پژوهشی، Original)
بالاترین نمایه نامه بین‌المللی ISI
سطح مقاله از مجلات برتر25%(scopus-Q1)
IF 2.892
عنوان نشریه Biochemical Engineering Journal
نوع نشریه خارجی ایندکس شده
شماره نشریه
دوره 128
تاریخ انتشار شمسی 1396/09/24
تاریخ انتشار میلادی
آدرس لینک مقاله/ همایش در شبکه اینترنت https://www.sciencedirect.com/science/article/pii/S1369703X17302255
DOI
آدرس علمی (Affiliation) نویسنده متقاضی Nano Drug Delivery Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran

خلاصه مقاله
hide/show

Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/ artificial neural network (ANN) integrated system was developed. Poly (3,4 ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The modified electrode was employed to detect and measure catechol. The reaction of catechol and the prepared electrode was controlled by adsorption. Linear responses of the biosensor were over two ranges, 0.036-0.35 μM and 0.35- 2.5 μM, with a detection limit of 0.032 μM. The proposed biosensor was tested in real water samples successfully. The experimental test results were applied to train ANNs by the back-propagation algorithm. The input and output parameters were current and catechol concentration, respectively. Results from ANN modeling complied well with the experiments, signifying its useful application in biosensor technology.

نویسندگان
hide/show

نویسنده نفر چندم مقاله نویسنده مسئول
سهیلا کاشانیاندومخير

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
10.1016_j.bej.2017.09.005.pdf1397/03/151577057دانلود